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Abstract:  In this work we prove lower bounds on the randomized decision tree complexity of several read-once 

threshold functions. A read-once threshold formula can be defined by a rooted tree, in which every internal node is 

labeled by a threshold function 𝑻𝒌
𝒏 (with output 1 only when at least 𝒌 out of 𝒏 input bits are 1) and each leaf by a 

variable. We consider the randomized decision tree complexity of such functions, when the underlying tree is a 

uniform and balanced tree with all its internal nodes labeled by the same threshold function. We prove lower bounds 

of the form 𝒄(𝒌, 𝒏)𝒅, where 𝒅 is the depth of the tree, for certain values of 𝒌 and 𝒏. The value of each parameter 

𝒄(𝒌, 𝒏) depends on the solution of a linear program, which is provided by computational methods.  

Keywords: Decision trees, query complexity, randomized computation, lower bounds, read-once functions. 

I.   INTRODUCTION 

One of the simplest computational models is the Boolean decision tree model and its randomized version. It is therefore 

interesting to study functions with complexity still unknown in these models. A notable example of such a function is the 

recursive majority-of-three function (see Example 1.2 in [11]), which has been studied in recent works [6, 7, 10, 8, 9, 3]. 

These papers have narrowed the gap between the upper and lower bounds for recursive majority. An Ω((7/3)𝑑) lower 

bound was showed in [6] using tools from information theory. Furthermore, they presented an algorithm that improves the 

𝑂((8/3)𝑑) upper bound shown in [11]. Magniez, Nayak, Santha, and Xiao [10], improved the lower bound to Ω((5/2)𝑑) 

and the upper bound to 𝑂(2.64946𝑑). Subsequently, the lower bound was improved in [8] to Ω(2.55𝑑), building upon the 

techniques of [11]. The bound was further improved with a computer-assisted proof in [9]. The currently known best lower 

bound is Ω(2.59𝑑) from [3], where the proof was also computer-assisted. 

The recursive majority-of-three function is contained in a more general class of functions, called read-once threshold 

functions. These can be represented by formulae involving threshold functions as connectives. A threshold 𝑘-out-of-𝑛 

function, denoted 𝑇𝑘
𝑛, is a Boolean function of 𝑛 arguments that has value 1 if at least 𝑘 of the 𝑛 Boolean input values are 

1. A threshold formula can be defined as a rooted tree with labeled nodes; each internal node is labeled by a threshold 

function and each leaf by a variable. If each variable appears exactly once the formula is called read-once. When there are 

no OR or AND gates, then the formula is non-degenerate (see Theorem 2.2 in [4]) and uniquely represents the corresponding 

function. Thus, we may define the depth of 𝑓, denoted 𝑑(𝑓), as the maximum depth of a leaf in the unique tree-

representation and 𝑛(𝑓) as the number of variables. 

Our work draws from the early work of Saks and Wigderson [11] that showed exact asymptotic bounds for nand𝑑, the 

function represented by a uniform binary tree with nand gates. Heiman and Wigderson [5] showed that for every read-once 

function 𝑓 it holds 𝑅(𝑓) ∈ Ω(𝐷(𝑓)0.51), where 𝑅(𝑓) and 𝐷(𝑓) are the randomized and deterministic complexity of 𝑓 
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respectively. More recent work on this can be found in [1]. Threshold read-once functions were studied by Heiman, 

Newman, and Wigderson in [4] and were shown to have zero-error randomized complexity Ω(𝑛/2𝑑). 

In this work we provide lower bounds for those read-once threshold functions that are represented by uniform trees. That 

is, trees that are full and complete and with all their leaves at the same level. Furthermore, each internal node has the same 

number of children and is labeled by the same threshold gate 𝑇𝑘
𝑛. We list lower bounds for several values of 𝑘 and 𝑛 and 

we prove them with computer-assisted calculations. To be precise, each lower bound depends on the optimal solution to a 

linear program. We note that our approach differs from [9, 3] and the linear program is different from the analogous 

computational problems encountered in these works. 

Our results 

Denote by 𝐹𝑘,𝑛
𝑑  the function represented by a uniform tree of depth 𝑑 with each gate being 𝑇𝑘

𝑛. With respect to these classes 

of read-once functions we prove lower bounds for several values of 𝑘 and 𝑛 on their randomized decision tree complexity, 

denoted 𝑅(𝐹𝑘,𝑛
𝑑 ). 

Theorem 1  For 2 ≤ 𝑘 ≤ 8 and 3 ≤ 𝑛 ≤ 9, 𝑅(𝐹𝑘,𝑛
𝑑 ) = 𝛺(𝑐(𝑘, 𝑛)𝑑), where the values 𝑐(𝑘, 𝑛) are given in the following 

table.  

Table 1: Table of 𝒄(𝒌, 𝒏) values for 𝟐 ≤ 𝒌 ≤ 𝟖 and 𝟑 ≤ 𝒏 ≤ 𝟗. 

 

The value of 𝑐(2,3) matches the lower bound in [8], while the rest of the entries provide new lower bounds. More values 

for this table can be obtained with small computational power, however the size of the corresponding linear program grows 

exponentially with 𝑛.  

We believe that this work might be useful in further research on the recursive majority-of-three function or on improving 

the bounds on general read-once threshold functions. 

II.   DEFINITIONS, NOTATION, PRELIMINARIES 

Concepts related to decision tree complexity can be found in the survey of Buhrman and de Wolf [2]. 

Decision trees 

A  deterministic Boolean decision tree 𝑄 over a set of variables 𝑍 = {𝑧𝑖3𝑚𝑢|3𝑚𝑢𝑖 ∈ [𝑛]}, where [𝑛] = {1,2, … , 𝑛}, is a 

rooted and ordered binary tree. Each internal node is labeled by a variable 𝑧𝑖 ∈ 𝑍 and each leaf with a value from {0,1}. An  

assignment to 𝑍 (or an  input to 𝑄) is a member of {0,1}𝑛. A 𝜎 ∈ {0,1,∗}𝑛 is called a  cylinder. The output 𝑄(𝜎) of 𝑄 on an 

input 𝜎 is defined recursively as follows. Start at the root and let its label be 𝑧𝑖. If 𝜎𝑖 = 0, we continue with the left child of 

the root; if 𝜎𝑖 = 1, we continue with the right child of the root. We continue recursively until we reach a leaf. We define 

𝑄(𝜎) to be the label of that leaf. When we reach an internal node, we say that 𝑄  queries or  reads or  probes the 

corresponding variable. We say that 𝑄  computes a Boolean function 𝑓: {0,1}𝑛 → {0,1}, if for all 𝜎 ∈ {0,1}𝑛, 𝑄(𝜎) = 𝑓(𝜎). 

Note that every leaf of a decision tree determines a cylinder. The  cost of 𝑄 on input 𝜎, c𝑜𝑠𝑡 (𝑄; 𝜎), is the number of 

variables queried when the input is 𝜎. The  cost of 𝑄, c𝑜𝑠𝑡 (𝑄), is its  depth, the maximum distance of a leaf from the root. 

The  deterministic complexity, 𝐷(𝑓), of a Boolean function 𝑓 is the minimum cost over all Boolean decision trees that 

compute 𝑓. 

A  randomized Boolean decision tree 𝑄R is a distribution 𝑝 over deterministic decision trees. On input 𝜎, a deterministic 

decision tree is chosen according to 𝑝 and evaluated. The  cost of 𝑄𝑅 on input 𝜎 is c𝑜𝑠𝑡 (𝑄R; 𝜎) = ∑𝑄 𝑝(𝑄)c𝑜𝑠𝑡 (𝑄; 𝜎). 
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The  cost of 𝑄R is max𝜎c𝑜𝑠𝑡 (𝑄R; 𝜎). A randomized decision tree 𝑄R  computes a Boolean function 𝑓 (with zero error), if 

𝑝(𝑄) > 0 only when 𝑄 computes 𝑓. 

We are going to take a distributional view on randomized algorithms. Let 𝜇 be a distribution over {0,1}𝑛 and 𝑄R a 

randomized decision tree. The  expected cost of 𝑄𝑅 under 𝜇 is c𝑜𝑠𝑡𝜇(𝑄R) = ∑𝜎 𝜇(𝜎)c𝑜𝑠𝑡 (𝑄R; 𝜎). The  expected 

complexity under 𝜇, 𝑅𝜇(𝑓), of a Boolean function 𝑓, is the minimum expected cost under 𝜇 of any randomized Boolean 

decision tree that computes 𝑓. Clearly, 𝑅(𝑓) ≥ 𝑅𝜇(𝑓), for any 𝜇, and thus we can prove lower bounds on randomized 

complexity by providing lower bounds for the expected cost under any chosen distribution. 

Trees representing functions 

 For a rooted tree 𝑇, the  depth of a node is the number of edges on the path to the root; the  height of a node is the number 

of edges on the longest path between the node and any descendant leaf. The  depth of the tree is the maximum depth of a 

leaf. We call a tree  uniform if all the leaves are on the same level and all internal nodes have the same number of children 

(i.e., it is full and complete). We denote by 𝐿𝑇 the set of its leaves. 

Consider the uniform tree of depth 𝑑 in which every internal node has 𝑛 children and is label by 𝑇𝑘
𝑛 (the 𝑘-out-of-𝑛 threshold 

gate) with 1 < 𝑘 < 𝑛. We denote both the tree and the corresponding read-once threshold function by the same symbol 𝐹𝑘,𝑛
𝑑  

as it will be clear from the context what it refers to. Furthermore, we might drop the subscripts 𝑘 and 𝑛 if they are secondary 

to our discussion. 

Reluctant inputs and reluctant distribution 

The inputs considered hard for such a function are the reluctant inputs ([11]). Let 𝑀𝑘,𝑛(0) = ( [𝑛]
𝑘−1

) and 𝑀𝑘,𝑛(1) = ([𝑛]
𝑘

). 

Call an input to a 𝑇𝑘
𝑛-gate  reluctant, if it belongs to either of these sets. Call an input to a threshold read-once formula  

reluctant, if it is such that the inputs to every gate are reluctant. The  reluctant distribution for a formula, is the uniform 

distribution over all reluctant inputs. 

III.   THE METHOD OF GENERALIZED COSTS 

Our goal is to prove a lower bound on the expected cost of any randomized decision tree 𝑄R that computes a uniform 

threshold read-once function of depth 𝑑. The high-level outline of our proof is as follows. Given any decision tree 𝑄R for 

the function 𝐹𝑘,𝑛
𝑑 , we define a randomized decision tree 𝑄R′ that computes 𝐹𝑘,𝑛

𝑑−1. Algorithm 𝑄R′ will use 𝑄R in a clever way 

so that  

 c𝑜𝑠𝑡𝜇(𝑄R) ≥ 𝜆 ⋅ c𝑜𝑠𝑡𝜇′(𝑄R′),     𝑤ℎ𝑒𝑟𝑒  𝜆 > 1, 𝜇 = 𝜇𝑘,𝑛
𝑑 , 𝜇′ = 𝜇𝑘,𝑛

𝑑−1 . 

Applying this step repeatedly we deduce that c𝑜𝑠𝑡𝜇(𝑄R) is at least 𝜆𝑑  times the cost of an algorithm on a single variable. 

To implement this plan we utilize the method of generalized costs of Saks and Wigderson [11]. We now recall some 

definitions from [8]. 

Cost functions 

 Define a  cost-function relative to a variable set 𝑍, to be a pair 𝑐 = (𝑐0, 𝑐1), where 𝑐0, 𝑐1: 𝐿𝑇 → ℝ. The cost of a decision 

tree 𝑄 under cost-function 𝑐 on input 𝜎 is  

 c𝑜𝑠𝑡 (𝑄; 𝑐; 𝜎) = ∑𝑧∈𝑆 𝑐𝜎𝑧
(𝑧), 

where 𝑆 = {𝑧3𝑚𝑢|3𝑚𝑢 𝑧  𝑖𝑠  𝑞𝑢𝑒𝑟𝑖𝑒𝑑  𝑏𝑦  𝑄  𝑜𝑛  𝑖𝑛𝑝𝑢𝑡  𝜎 }. The cost of a randomized decision tree 𝑄R on input 𝜎 under 

cost-function 𝑐 is  

 c𝑜𝑠𝑡 (𝑄R; 𝑐; 𝜎) = ∑𝑄 𝑝(𝑄)c𝑜𝑠𝑡 (𝑄; 𝑐; 𝜎), 

where 𝑝 is the corresponding distribution over deterministic decision trees. Finally, the expected cost of a randomized 

decision tree 𝑄R under cost-function 𝑐 and distribution 𝜇 is  

 c𝑜𝑠𝑡𝜇(𝑄R; 𝑐) = ∑𝜎 𝜇(𝜎)c𝑜𝑠𝑡 (𝑄R; 𝑐; 𝜎). 

https://www.paperpublications.org/
https://www.paperpublications.org/


                                                                                                                                                                    ISSN  2350-1022 
 

International Journal of Recent Research in Mathematics Computer Science and Information Technology  
Vol. 9, Issue 2, pp: (11-17), Month: October 2022 – March 2023, Available at: www.paperpublications.org 

 

 Page | 14 
Paper Publications 

Preliminaries 

 Consider a tree 𝑇 of depth 𝑑 + 1 such that all internal nodes have degree 𝑛 and all leaves are on levels 𝑑 and 𝑑 + 1. If we 

treat every internal node as a 𝑇𝑘
𝑛-gate, this tree represents a function 𝐹 and has an associated reluctant distribution 𝜇. Suppose 

𝑄 is a randomized decision tree that computes 𝐹 and 𝑐 = (𝑐0, 𝑐1) a cost function. We define a process that shrinks 𝑇 to a 

smaller tree 𝑇′ (of depth 𝑑 or 𝑑 + 1) and also a corresponding randomized decision tree 𝑄′ that computes the function 𝐹′ 

that is represented by 𝑇′. The crucial part is to show that for a “more expensive” cost-function 𝑐′ and the reluctant 

distribution 𝜇′ over the variables of 𝐹′,  

 c𝑜𝑠𝑡𝜇(𝑄; 𝑐) ≥ c𝑜𝑠𝑡𝜇′(𝑄′; 𝑐′). (1) 

The main ingredient in this framework is the shrinking process, which entails removing 𝑛 leaves 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}, so 

that their parent 𝑢 would become a leaf in 𝑇′. Given an algorithm 𝑄 for 𝐹 we obtain an algorithm 𝑄′ for 𝐹′ as follows. On 

input 𝜎′𝑢, 𝑄′ first chooses uniformly at random 𝑥 ∈ [𝑛 − 1]
𝑘 − 1

 and 𝑖 ∈ [𝑛] and then simulates 𝑄 on 𝜎 =

𝜎′𝑥1 ⋯ 𝑥𝑖−1𝑢𝑥𝑖 ⋯ 𝑥𝑛−1. 

 

Fact 2  If 𝑄 is a randomized decision tree that computes 𝐹, then 𝑄′ is a randomized decision tree that computes 𝐹′.  

Our goal is to determine the “most expensive” cost function 𝑐′ for 𝑇′ for which we can argue (1). To that end, it will be 

useful to express c𝑜𝑠𝑡𝜇′(𝑄′; 𝑐′) in terms of 𝑄 and 𝑇. For an assignment 𝜎 and a leaf 𝑤, let 𝑏 = 𝑇𝑘
𝑛(𝜎𝑣1

, … , 𝜎𝑣𝑛
) and define 

a cost function 𝑐 = (𝑐0, 𝑐1) for 𝑇 as follows.  

 

𝑐𝜎𝑤= {

𝑐′
𝜎𝑤

(𝑤)  𝑖𝑓 w ∉ V

𝑐′
1(𝑢)/𝑘 𝑖𝑓 w ∈ V and σw = b = 1

𝑐′
0(𝑢)/(𝑛 − 𝑘 + 1) 𝑖𝑓 w ∈ V and σw = b = 0

             (2) 

 

and 0 otherwise. For 𝜇 the reluctant distribution on 𝑇 we have the following proposition.  

Proposition 3  𝑐𝑜𝑠𝑡𝜇′(𝑄′; 𝑐′) = 𝑐𝑜𝑠𝑡𝜇(𝑄; 𝑐).  

Proof. Observe that the distribution of 𝜎 as generated by 𝑄′ is 𝜇. Furthermore, over the random choices of 𝑄′, each 𝜎 is 

encountered 𝑘 and 𝑛 − 𝑘 + 1 times when 𝜎′𝑢 is 1 or 0 respectively. In particular, for any 𝜎, each time we charge 𝑄 for 

𝑐′1(𝑢)/𝑘, 𝑄′ is charged 𝑐′1(𝑢) with probability 1/𝑘.  

We shall define 𝑐′ so that 𝑐′(𝑤) = 𝑐(𝑤) for all 𝑤 ∉ 𝑉. Recall Proposition 3 and observe that  

 c𝑜𝑠𝑡𝜇(𝑄; 𝑐) ≥ c𝑜𝑠𝑡𝜇′(𝑄′; 𝑐′) ⇐ c𝑜𝑠𝑡𝜇(𝑄; 𝑐 − 𝜓) ≥ 0. (3) 

 Since 𝑐 − 𝜓 is 0 for 𝑤 ∉ 𝑉, we only need to verify (3) with respect to the leaves in 𝑉. Thus, we are led to study decision 

trees over ([𝑛]
𝑘

). 

Decision trees over ([𝑛]
𝑘

) and the quantity 𝑷(𝒌, 𝒏) 

We are interested in the cost of arbitrary (but non-empty) decision trees over 𝒳𝑘,𝑛 = ([𝑛]
𝑘

). under the cost function 𝑐𝜂 =

(1, −𝜂), where 𝜂 ∈ ℝ≥. In particular, we are interested in the values defined below. 

 Let 𝒳𝑘,𝑛 = [𝑛]
𝑘

 and 𝜈𝑘,𝑛 the uniform distribution over 𝒳𝑘,𝑛. For 𝜂 ∈ ℝ≥ and 0 < 𝑘 ≤ 𝑛, define  

 𝑃𝜂(𝑘, 𝑛) = min
𝑄

{c𝑜𝑠𝑡𝜈𝑘,𝑛
(𝑄; 𝑐𝜂))}     𝑎𝑛𝑑     𝑃(𝑘, 𝑛) = max

𝜂
{𝑃𝜂(𝑘, 𝑛) ≥ 0}, 

where 𝑄 ranges over all non-empty decision trees. Define also 𝑃(0, 𝑛) = ∞.  
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Computing 𝑃(𝑘, 𝑛) is our main goal. Suppose 𝑐1(𝑣1) = ⋯ = 𝑐1(𝑣𝑛) = 𝑐1, 𝑐0(𝑣1) = ⋯ = 𝑐0(𝑣𝑛) = 𝑐0, 𝛼 = 𝑃(𝑘, 𝑛), and 

𝛽 = 𝑃(𝑛 − 𝑘 + 1, 𝑛). Writing 𝑐′1 = 𝑐′1(𝑢) and 𝑐′0 = 𝑐′0(𝑢), we may set  

 (𝑐1′𝑐0) = (
𝑘 𝛼𝑘
𝛽(𝑛 − 𝑘 + 1) 𝑛 − 𝑘 + 1) (𝑐1𝑐0). (4) 

Proposition 4 𝑐𝑜𝑠𝑡𝜇(𝑄; 𝑐) ≥ 𝑐𝑜𝑠𝑡𝜇′(𝑄′; 𝑐′).  

Proof. As discussed above, 𝑐 − 𝜓 is 0 outside 𝑉. The inequality follows from the observation that (𝑐 − 𝜓) is 𝑐0𝑐𝛼 =

(𝑐0, −𝑐0𝛼) over the support of 𝜈𝑘,𝑛 and 𝑐1𝑐𝛽 = (𝑐1, −𝑐1𝛽) over the support of 𝜈𝑛−𝑘−1,𝑛.  

Applying this process repeatedly, shrinking all sibling leaves to their parent, we reduce 𝐹𝑑 to 𝐹𝑑−1. After 𝑑 such steps we 

are left with a single node and the cost function defined by  

 (𝑐1′𝑐0) = Γ𝑘,𝑛
𝑑 (1,1) , where  Γ𝑘,𝑛 = (

𝑘 𝛼𝑘
𝛽(𝑛 − 𝑘 + 1) 𝑛 − 𝑘 + 1). (5) 

We obtain a lower bound in the order of 𝜆𝑑 , where 𝜆 is the largest eigenvalue of the matrix Γ𝑘,𝑛. Denoting its trace by 𝑇 and 

its determinant by 𝐷,  

 𝜆 =
𝑇

2
+ √

𝑇2

4
− 𝐷,    where  𝑇 = 𝑛 + 1  and  𝐷 = (1 − 𝛼𝛽)𝑘(𝑛 − 𝑘 + 1). (6) 

To obtain the best possible value for 𝑐(𝑘, 𝑛) (with respect to Theorem 1), we are now concerned with the task of providing 

the best possible lower bounds on 𝛼 = 𝑃(𝑘, 𝑛) and 𝛽 = 𝑃(𝑛 − 𝑘 + 1, 𝑛). 

IV.   A LINEAR PROGRAMMING APPROACH 

We can lower bound 𝑃(𝑘, 𝑛) by the optimal value of a linear program. Note that a decision tree algorithm over 𝑋 = 𝒳𝑘,𝑛 

determines a subset of  

 𝑍 = {𝑧 ∈ {0,1}𝑚: 1 ≤ 𝑚 ≤ 𝑛}. 

Denoting by 𝑛𝑧 the length of 𝑧 and by 𝑘𝑧 its weight (the number of 1’s), the cost of a 𝑧 ∈ 𝑍 under 𝑐𝜂 can be written as  

 (𝑛𝑧 − 𝑘𝑧 − 𝜂𝑘𝑧) ⋅
(

𝑛−𝑛𝑧
𝑘−𝑘𝑧

)

(𝑛
𝑘)

. 

The following linear program provides a lower bound on 𝑃𝜂(𝑘, 𝑛); i.e.a lower bound on the cost of any decision tree 

algorithm over 𝑋 under 𝑐𝜂.  

 min    ∑𝑧∈𝑍 𝛼𝑧(𝑛𝑧 − 𝑘𝑧 − 𝜂𝑘𝑧) ⋅
(

𝑛−𝑛𝑧
𝑘−𝑘𝑧

)

(𝑛
𝑘)

 

 s. t.    𝛼𝑧 ≥ 0, ∀𝑧 ∈ 𝑍; 

 ∑𝑥∈𝑧 𝛼𝑧 = 1, ∀𝑥 ∈ 𝑋. 

Where 𝑥 ∈ 𝑧 denotes that 𝑧 is a prefix of 𝑥 (that is, 𝑥 belongs in the cylinder defined by 𝑧). We obtain the following dual 

program.  

 max    ∑𝑥∈𝑋 𝛽𝑥 

 s. t.    ∑𝑥∈𝑧 𝛽𝑥 ≤ (𝑛𝑧 − 𝑘𝑧 − 𝜂𝑘𝑧) ⋅
(

𝑛−𝑛𝑧
𝑘−𝑘𝑧

)

(𝑛
𝑘)

, ∀𝑧 ∈ 𝑍. 

Recall that we interested in the greatest value of 𝜂 so that the value of the dual is non-negative. Observing that 𝜂 is also a 

linear parameter, we manipulate the dual to obtain the following linear program. Normalizing by |𝑋| = 𝑛
𝑘

,  
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 max    𝜂 

 s. t.    ∑𝑥∈𝑋 𝛽𝑥 ≥ 0 

 𝜂𝑘𝑧 (𝑛−𝑛𝑧
𝑘−𝑘𝑧

) + ∑𝑥∈𝑧 𝛽𝑥 ≤ (𝑛𝑧 − 𝑘𝑧) (𝑛−𝑛𝑧
𝑘−𝑘𝑧

) , ∀𝑧 ∈ 𝑍. 

 We can now construct the dual of 𝐷(𝑘, 𝑛) to obtain a primal linear program for 𝑃(𝑘, 𝑛).  

 min    ∑𝑧∈𝑍 𝛼𝑧(𝑛𝑧 − 𝑘𝑧) (𝑛−𝑛𝑧
𝑘−𝑘𝑧

) 

 s. t.    ∑𝑧 𝑘𝑧 (𝑛−𝑛𝑧
𝑘−𝑘𝑧

) 𝛼𝑧 = 1 

 ∑𝑥∈𝑧 𝛼𝑧 = 𝛼∅, ∀𝑥 ∈ 𝑋. 

An alternative way to arrive at 𝐿𝑃(𝑘, 𝑛) would be to express the objective function of the primal linear program 𝐿𝑃𝜂(𝑘, 𝑛) 

as a ratio of linear functions and producing an equivalent linear program using standard techniques.  

Lower bounds 

We list in the following table numerical values of 𝑃(𝑘, 𝑛) that were computed by solving optimally the linear program 

𝐿𝑃(𝑘, 𝑛).     

Table 2: Table of 𝑷(𝒌, 𝒏) values for 𝟏 ≤ 𝒌 ≤ 𝟖 and 𝟐 ≤ 𝒏 ≤ 𝟗. 

 

To obtain the corresponding table for Theorem 1 we apply Equation 6. For example, for 𝑘 = 3 and 𝑛 = 7, with respect to 

Equation 6 we obtain 𝑇 = 8 and 𝐷 = 15 ⋅ [1 − 𝑃(3,7)𝑃(5,7)] = 15 ⋅ (1 − 0.807 ⋅ 0.230) = 12.215, which gives 

𝑐(3,7) = 4 + √16 − 12.215 = 5.945. 

V.   CONCLUSIONS 

We can lower We have shown how to generalize the framework in [8] to extend the lower bound that was obtained there 

for recursive majority-of-three to other threshold read-once functions. Further work could focus either on improving the 

bounds on recursive majority-of-three by formulating and solving a corresponding optimization problem or augmenting the 

analysis so that it includes any threshold read-once function and improving on the bound in [4]. 
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